
Predicting Pseudoknots Without Hacking in C
Master’s Thesis Project

Maik Riechert

HTWK Leipzig

4th October 2012
10. Herbstseminar der Bioinformatik

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 1 / 13

Problem

Input: RNA primary structure
CAAUUUUCUGAAAAUUUUCAC

(from tobacco etch virus)

Output: “best” secondary structure (including pseudoknots)

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 2 / 13

Problem

Input: RNA primary structure
CAAUUUUCUGAAAAUUUUCAC

(from tobacco etch virus)

Output: “best” secondary structure (including pseudoknots)

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 2 / 13

Problem

Input: RNA primary structure
CAAUUUUCUGAAAAUUUUCAC

(from tobacco etch virus)

Output: “best” secondary structure (including pseudoknots)

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 2 / 13

Problem

Input: RNA primary structure
CAAUUUUCUGAAAAUUUUCAC

(from tobacco etch virus)

Output: “best” secondary structure (including pseudoknots)

w = .(((((..[[[))))).]]].

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 2 / 13

Decomposing secondary structures with grammars

Context-free grammars for nested secondary structures

= ε| |

Derivation tree = decomposed secondary structure

S
.

S

P

(

S

P

(

S ǫ

)

S ǫ)

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 3 / 13

Decomposing secondary structures with grammars

Context-free grammars for nested secondary structures

= ε| |
S = . S | (S)S | ε

Derivation tree = decomposed secondary structure

S
.

S

P

(

S

P

(

S ǫ

)

S ǫ)

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 3 / 13

Decomposing secondary structures with grammars

Context-free grammars for nested secondary structures

= ε| |
S = . S | PS | ε P = (S)

Derivation tree = decomposed secondary structure

S
.

S

P

(

S

P

(

S ǫ

)

S ǫ)

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 3 / 13

Decomposing secondary structures with grammars

Context-free grammars for nested secondary structures

= ε| |
S = . S | PS | ε P = (S)

Derivation tree = decomposed secondary structure

S
.

S

P

(

S

P

(

S ǫ

)

S ǫ)

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 3 / 13

Deriving (and decomposing) sec. structures with grammars

Context-free grammars for primary structures
S = BS | PS | ε
P = aSu | uSa | gSc | cSg | gSu | uSg
B = a | u | g | c

Derivation tree = implicit (and decomposed) secondary structure

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 4 / 13

Deriving (and decomposing) sec. structures with grammars

Context-free grammars for primary structures
S = BS | PS | ε
P = aSu | uSa | gSc | cSg | gSu | uSg
B = a | u | g | c

Derivation tree = implicit (and decomposed) secondary structure

S

B a

S

B g

S

B c

S

B g

S
B u

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 4 / 13

Deriving (and decomposing) sec. structures with grammars

Context-free grammars for primary structures
S = BS | PS | ε
P = aSu | uSa | gSc | cSg | gSu | uSg
B = a | u | g | c

Derivation tree = implicit (and decomposed) secondary structure

S

B a

S

B g

S

B c

S

P

g

S ǫ

u

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 4 / 13

Deriving (and decomposing) sec. structures with grammars

Context-free grammars for primary structures
S = BS | PS | ε
P = aSu | uSa | gSc | cSg | gSu | uSg
B = a | u | g | c

Derivation tree = implicit (and decomposed) secondary structure

S

B a

S

B g

S

P

c

S ǫ

g

S
B u

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 4 / 13

Deriving (and decomposing) sec. structures with grammars

Context-free grammars for primary structures
S = BS | PS | ε
P = aSu | uSa | gSc | cSg | gSu | uSg
B = a | u | g | c

Derivation tree = implicit (and decomposed) secondary structure

S

B a

S

P

g

S ǫ

c

S

B g

S
B u

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 4 / 13

Deriving (and decomposing) sec. structures with grammars

Context-free grammars for primary structures
S = BS | PS | ε
P = aSu | uSa | gSc | cSg | gSu | uSg
B = a | u | g | c

Derivation tree = implicit (and decomposed) secondary structure

S

B a

S

P

g

S ǫ

c

S

P

g

S ǫ

u

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 4 / 13

Deriving (and decomposing) sec. structures with grammars

Context-free grammars for primary structures
S = BS | PS | ε
P = aSu | uSa | gSc | cSg | gSu | uSg
B = a | u | g | c

Derivation tree = implicit (and decomposed) secondary structure

S

B a

S

P

g

S

B c

S
B g

S ǫ

u

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 4 / 13

Deriving (and decomposing) sec. structures with grammars

Context-free grammars for primary structures
S = BS | PS | ε
P = aSu | uSa | gSc | cSg | gSu | uSg
B = a | u | g | c

Derivation tree = implicit (and decomposed) secondary structure

S

B a

S

P

g

S

P

c

S ǫ

g

S ǫu

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 4 / 13

Deriving (and decomposing) sec. structures with grammars

Context-free grammars for primary structures
S = BS | PS | ε
P = aSu | uSa | gSc | cSg | gSu | uSg
B = a | u | g | c

Derivation tree = implicit (and decomposed) secondary structure

S

P

a

S

B g

S

B c

S
B g

S ǫ

u

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 4 / 13

Deriving (and decomposing) sec. structures with grammars

Context-free grammars for primary structures
S = BS | PS | ε
P = aSu | uSa | gSc | cSg | gSu | uSg
B = a | u | g | c

Derivation tree = implicit (and decomposed) secondary structure

S

P

a

S

B g

S

P

c

S ǫ

g

S ǫ

u

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 4 / 13

Deriving (and decomposing) sec. structures with grammars

Context-free grammars for primary structures
S = BS | PS | ε
P = aSu | uSa | gSc | cSg | gSu | uSg
B = a | u | g | c

Derivation tree = implicit (and decomposed) secondary structure

S

P

a

S

P

g

S ǫ

c

S
B g

S ǫ

u

S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 4 / 13

Dynamic Programming (Cocke–Younger–Kasami, ’60s)
Nonterminal N represented by 2-dimensional table
Ni ,j represents optimal value of all derivation trees with N as root for
subword [i , j]
Tables computed in cubic time

Recurrences for optimizing base pairs
(grammar: S = . S | (S)S | ε)

Si ,j = max(
{Si+1,j | j − i ≥ 1 ∧ wi ∈ {‘g’, ‘c’, ‘a’, ‘u’}} ∪
{1 + Si+1,k−1 + Sk,j | j − i ≥ 2 ∧ i + 1 ≤ k ≤ j ∧ . . . } ∪
{0 | j − i = 0}

)

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 5 / 13

Dynamic Programming (Cocke–Younger–Kasami, ’60s)
Nonterminal N represented by 2-dimensional table
Ni ,j represents optimal value of all derivation trees with N as root for
subword [i , j]
Tables computed in cubic time

Recurrences for optimizing base pairs
(grammar: S = . S | (S)S | ε)

Si ,j = max(
{Si+1,j | j − i ≥ 1 ∧ wi ∈ {‘g’, ‘c’, ‘a’, ‘u’}} ∪
{1 + Si+1,k−1 + Sk,j | j − i ≥ 2 ∧ i + 1 ≤ k ≤ j ∧ . . . } ∪
{0 | j − i = 0}

)

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 5 / 13

Software for CYK parsing / evaluation

Fixed set of grammars
RNAfold
Mfold
UNAFold
RNAstructure
Pknots
...

Arbitrary grammars
ADP
ADPfusion
ADPC
GAPC

explicit DP
=

arrays, indices, recurrences
=

many lines of C code

implicit DP
=

grammars, algebras
=

concise high-level code

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 6 / 13

Software for CYK parsing / evaluation

Fixed set of grammars
RNAfold
Mfold
UNAFold
RNAstructure
Pknots
...

Arbitrary grammars
ADP
ADPfusion
ADPC
GAPC

explicit DP
=

arrays, indices, recurrences
=

many lines of C code

implicit DP
=

grammars, algebras
=

concise high-level code

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 6 / 13

Algebraic Dynamic Programming (Giegerich, 2000)
s = (\ b s -> s) <<< b -~~ s |||

(\ p s -> 1+p+s) <<< p +~~ s |||
(\ _ -> 0) <<< empty
... max

p = (\ _ s _ -> s) <<< char ’a’ -~~ s ~~- char ’u’ |||
(\ _ s _ -> s) <<< char ’u’ -~~ s ~~- char ’a’ |||
...

b = (\ _ -> 0) <<< char ’a’ |||
(\ _ -> 0) <<< char ’u’ |||
...

Grammar with evaluation functions (= algebra)
Haskell program
s, p, b compute their dynamic programming table

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 7 / 13

Multiple context-free grammars (Seki et al., 1991)
(for RNA secondary structures: (Kato et al., 2005))

Pseudoknots = crossings = not context-free
L = {ai

1bj
1ai

2bj
2 | i , j ≥ 0}

e.g. ((([[)))]]

Nonterminals as vectors (or: introducing limited context-sensitivity)

S = . S | (S)S | ε | M1SN1SM2SN2S(
M1
M2

)
=

(
M1(
)M2

)∣∣∣∣∣
(
(
)

)
(

N1
N2

)
=

(
N1[
]N2

)∣∣∣∣∣
(
[
]

)

(inlined style (Wild, 2010))

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 8 / 13

Multiple context-free grammars (Seki et al., 1991)
(for RNA secondary structures: (Kato et al., 2005))

Pseudoknots = crossings = not context-free
L = {ai

1bj
1ai

2bj
2 | i , j ≥ 0}

e.g. ((([[)))]]

Nonterminals as vectors (or: introducing limited context-sensitivity)

S = . S | (S)S | ε | M1SN1SM2SN2S(
M1
M2

)
=

(
M1(
)M2

)∣∣∣∣∣
(
(
)

)
(

N1
N2

)
=

(
N1[
]N2

)∣∣∣∣∣
(
[
]

)

(inlined style (Wild, 2010))

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 8 / 13

Multiple context-free grammars, continued

Input word
([[)]]

Derivation tree

S

M1 (

S ǫ

N1

N1 [

[
S ǫ

M2)

S ǫ

N2

]

N2]
S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 9 / 13

Multiple context-free grammars, continued

Input word
([[)]]

Derivation tree

S

M1 (

S ǫ

N1

N1 [

[
S ǫ

M2)

S ǫ

N2

]

N2]
S ǫ

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 9 / 13

Dynamic programming for multiple context-free grammars
Nonterminal N with dimension d ≥ 1 represented by 2d-dimensional
table
For d = 1, Ni ,j represents optimal value of all derivation trees with N
as root for subword [i , j]

For d = 2, Ni ,j,k,l represents optimal value of all derivation trees with
N as root for subwords [i , j] and [k, l]
For d = 3, Ni ,j,k,l ,m,n ...

1 Writing explicit DP code without errors is hard.
2 It becomes even harder for ≥ 4-dimensional tables.
3 Don’t do it over and over from scratch!

Solution: adp-multi (myself, 2012)

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 10 / 13

Dynamic programming for multiple context-free grammars
Nonterminal N with dimension d ≥ 1 represented by 2d-dimensional
table
For d = 1, Ni ,j represents optimal value of all derivation trees with N
as root for subword [i , j]
For d = 2, Ni ,j,k,l represents optimal value of all derivation trees with
N as root for subwords [i , j] and [k, l]

For d = 3, Ni ,j,k,l ,m,n ...

1 Writing explicit DP code without errors is hard.
2 It becomes even harder for ≥ 4-dimensional tables.
3 Don’t do it over and over from scratch!

Solution: adp-multi (myself, 2012)

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 10 / 13

Dynamic programming for multiple context-free grammars
Nonterminal N with dimension d ≥ 1 represented by 2d-dimensional
table
For d = 1, Ni ,j represents optimal value of all derivation trees with N
as root for subword [i , j]
For d = 2, Ni ,j,k,l represents optimal value of all derivation trees with
N as root for subwords [i , j] and [k, l]
For d = 3, Ni ,j,k,l ,m,n ...

1 Writing explicit DP code without errors is hard.
2 It becomes even harder for ≥ 4-dimensional tables.
3 Don’t do it over and over from scratch!

Solution: adp-multi (myself, 2012)

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 10 / 13

Dynamic programming for multiple context-free grammars
Nonterminal N with dimension d ≥ 1 represented by 2d-dimensional
table
For d = 1, Ni ,j represents optimal value of all derivation trees with N
as root for subword [i , j]
For d = 2, Ni ,j,k,l represents optimal value of all derivation trees with
N as root for subwords [i , j] and [k, l]
For d = 3, Ni ,j,k,l ,m,n ...

1 Writing explicit DP code without errors is hard.
2 It becomes even harder for ≥ 4-dimensional tables.
3 Don’t do it over and over from scratch!

Solution: adp-multi (myself, 2012)

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 10 / 13

Dynamic programming for multiple context-free grammars
Nonterminal N with dimension d ≥ 1 represented by 2d-dimensional
table
For d = 1, Ni ,j represents optimal value of all derivation trees with N
as root for subword [i , j]
For d = 2, Ni ,j,k,l represents optimal value of all derivation trees with
N as root for subwords [i , j] and [k, l]
For d = 3, Ni ,j,k,l ,m,n ...

1 Writing explicit DP code without errors is hard.
2 It becomes even harder for ≥ 4-dimensional tables.
3 Don’t do it over and over from scratch!

Solution: adp-multi (myself, 2012)

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 10 / 13

adp-multi: extending ADP with MCFGs
rewritePair [p1,p2,s1,s2] = [p1,s1,p2,s2]
rewriteKnot [k11,k12,k21,k22,s1,s2,s3,s4]

= [k11,s1,k21,s2,k12,s3,k22,s4]

s = nil <<< EPS >>>| id |||
left <<< b ~~~| s >>>| id |||
pair <<< p ~~~| s ~~~| s >>>| rewritePair |||
knot <<< k ~~~ k ~~~| s ~~~| s ~~~| s ~~~| s >>>| rewriteKnot
... h

b = base <<< ’a’ >>>| id |||
base <<< ’u’ >>>| id |||
...

p = basepair <<< (’a’,’u’) >>>|| id2 |||
basepair <<< (’u’,’a’) >>>|| id2 |||
...

rewriteKnot1 [p1,p2,k1,k2] = ([k1,p1],[p2,k2])

k = knot1 <<< p ~~~|| k >>>|| rewriteKnot1 |||
knot2 <<< p >>>|| id2

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 11 / 13

nil _ = 0
left _ b = b
pair _ b c = b + c
knot _ _ c d e f
= 1 + c + d + e + f

knot1 _ _ = 0
knot2 _ = 0
basepair _ = 0
base _ = 0
h = max

adp-multi: extending ADP with MCFGs

What is it?
Extension of ADP method with multiple context-free grammars
Prototype in Haskell based on original ADP implementation

Prototype means...
High constant runtime factor (as original ADP prototype)
Only 1+2-dimensional nonterminals so far (but easily extensible)
Useful for experimentation (includes example grammars)

Future work
Support all dimensions
Integrate into ADPfusion

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 12 / 13

Thanks and acknowledgments

Johannes Waldmann
Peter F. Stadler
Christian Höner zu Siederdissen
#haskell @ irc://chat.freenode.net

More info and source code
http://adp-multi.ruhoh.com

Maik Riechert (HTWK Leipzig) Predicting Pseudoknots Without Hacking in C 4th October 2012 13 / 13

http://adp-multi.ruhoh.com

	Problem
	Context-free grammars
	Dynamic Programming
	Multiple context-free grammars
	Dynamic programming for multiple context-free grammars
	adp-multi

